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Abstract. Quantum wavepacket collisions of a Lorentzian state with a separable potential
are described analytically. This model problem illustrates many different aspects of time-
dependent scattering: in particular, the effects associated with resonance poles (time delay,
exponential decay) and other critical points in the complex momentum plane, the effects of
complex absorbing potentials, as well as some unique aspects of short- and long-time behaviour.

1. Introduction

Analytically solvable models are useful research tools to check the validity of hypotheses,
new calculation methods, and/or approximations. They also lead occasionally to the
discovery of new physical effects. Few models exist that allow an explicit analytical
examination of time-dependent scattering. Elberfeld and Kleber described the collision
of a wavepacket, initially a Lorentzian-like function in momentum representation, with a
delta function potential [1]. The model has found some applications [2], but it is somewhat
limited because it does not consider resonances. The first aim of this paper is to provide an
analytical description of a wavepacket colliding with a separable potential (real or complex)
that admits resonance scattering. Then the model is applied to illustrate a number of
propagation characteristics. Some of them are well known but are included for completeness,
such as time delays or exponential decay. Others are not: for example, the build-up
regime previous to the exponential decay, deformations due to the resonances, very short
or very large times, low-energy scattering, interferences between the ‘free’ and ‘scattered’
components, the effect of ‘spurious’ poles and other singularities in the complex momentum
plane, or time-dependent scattering of absorptive potentials (where an interesting negative
delay phenomenon for the transmitted packet, versus a positive delay for the reflected one,
is described).

The stationary and time-dependent regimes are described in sections 2 and 3 respectively.
In section 4 the different applications are discussed.

2. Separable potential: stationary scattering

A separable potential model has been used in a number of previous works for different
purposes [3-13],
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In this work all variables (position, momentum, energy, time) are dimensignl&esfore
discussing time-dependent scattering it is useful to first examine the stationary regime.
General properties of separable potentials have been examined by Ghirardi and Rimini [14].
For the particular form (1) the stationary scattering has been studied in the unitarywcase (
real) [3, 5]. Here we shall briefly review the main results, and then extend the analysis
to the absorptive case. The matrix [15] is diagonal for symmetric and antisymmetric
combinations of plane waves. Its two elements in this basis are

(p +1)2C*(p*, v¥)

So=n€ =T+ R = :
o=To (p —1)2C(p. v) @)

Si=m&"=T_—-R=1
where

C(p,v) = p(p+10)?— 2v(p + 2i). (3)

T andR are transmission and reflection amplitudes,; are (real) ‘inelasticity parameters’
[16], and éo1 (real) phase shifts. A peculiarity of this potential is its ‘transparency’ for
antisymmetric waves;; = 1, 8; = 0.

For even potentials the transmission, reflection and absorption coefficients can be written
in terms of the phase shifts, see (2), as

_ 2
T=|TR= (%) + 11071 CO2(80 — 81) (4)
. 2 _(NMo—Mm 2 ir?
R=|R|"= > + non1 SINF(8o — 61) (5)
A=1-T-R=1- 305+ nd. 6)

The maximum absorbance occurs when one of the roofs*gp*, v*) crosses the real axis
so thatSy = 1o = 0.

The roots ofC(p, v) will be denoted agp;, j = 1, 2, 3, while the roots ofC*(p*, v*)
are —p;. The latter are zeros a$p and the former are poles. The motion of the roots
of C(p,v) due to variations ofv was described in [5] for read. In particular, when
v > (—=11+ 5/5)/4, there are two roots with opposite real parts on both sides of the
negative imaginary axis, the ‘resonance’ and ‘antiresonance’ pol§g @f; and p, in the
fourth and third quadrant respectively), and a third root in the negative imaginarym¥is (
a 'virtual state pole’ that approachesi asv — oco. The resonance pole leads to a peak
in the reflection probability fon > % or, equivalently, a minimum in the transmission
probability (see figure 1). Note also the zero energy minimum related to the combined
effect of the virtual polep; and the double ‘spurious’ pole at = i [5]. The resonance
pole causes, when sufficiently close to the real axis, sudden jumps of the phase shift by
approximatelysr (see figure 2). In general these jumps may lead to a maximum or a
minimum of the reflectance depending on the ‘background’ pki&se 81),,. (The present
model provides a maximum while the square barrier is a well known example of minimum
reflection at resonance.)

Whenv is real, for every pole of at p; there is a zerd; at p;, see (2). The distance
from any realp to both points (zero and pole) is equal, so thafactorizes in contributions

1 The dimensionless momentum, position and time, are related to the corresponding dimensional quantities,
denoted here with a tilde, by the following expressions:= p/a, x = a%/h andt = 7a?/(mh), whereas

the potential constants (and similarly all energies) are linked bymi/a2. a is the characteristic momentum of

the system.
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Figure 1. Transmittance and absorbance vergusr Re(v) = 5: transmittances for Irv) = 0
(full curve), Im(v) = —0.8 (short broken curve), and Im) = —20 (upper dotted curve).
Absorbances for Inw) = —0.8 (long broken curve), and li®w) = —20 (lower dotted curve).
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Figure 2. 8p(p) versusp for Re(v) = 5: Im(v) = 0 (full curve), Im(v) = —0.3 (short broken
curve), and Imv) = —20 (long broken curve).

of unit modulus from each zero-pole pair [5]. However, the addition of an imaginary part to

v breaks this symmetry. If the zel) is closer to the real axis than the poglg absorption
occurs in the proximity of the pair because — Z;|/|p — p;| < 1. Figure 3 shows the
motion of zeros and poles & when —Im (v) is increased. The resonance zero-pole pair
goes down, towards the bisector of the fourth quadrant, and the antiresonance zero-pole
pair goes up, towards the bisector of the second quadrant.

When, at a critical value Irfv) = I, the zeroZ, associated with the resonance pole
crosses the real axis§y vanishes for the real momentum of the zero, and maximum
absorption occurs. Simultaneously, the antiresonance pole crosses the real negative axis
so that, in accordance with Levinson’s theorem [17, 18], there is a discontinuous jump
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Figure 3. Motion of zeros (squares) and poles (starsygin the complex momentum plane
for Re(v) =5, from Im(v) = 0 to Im(v) = —20.

in the phase shify at the origin. (The possiblen2 ambiguities in the definition o8g

are fixed by imposingy(cc) = 0 and continuity.) The unusual fact with respect to the
unitary case is that this jump is not caused by a new (regular) bound state of real negative
energy (represented by a pole in the positive imaginary axis), but by a new ‘localized state’
represented by a pole in the second quadrant of the momentum plane [17, 19]. It has positive
real energy and a negative imaginary energy so that its norm disappears exponentially with
time. For Im(v) slightly more negative thai. the slope ofsy is negative at resonance,
which physically implies an anomalous negative time delgy

=22 ™
pop
or time advance, instead of the standard (positive) resonance time delay found in the
Hermitian case [20].

By decreasing further Irtv) to more negative values the zero-pole pair moves away from
the real axis and the resonance width broadens until the peak in the reflectance eventually
disappears (see figure 1). For fixed g the asymptotic behaviour as lfm) — —oo of
the roots ofC(p, v) is p1 ~ [—Im (W)]Y?(1 — i), po ~ [-Im (v)]¥2(i — 1), and p3 ~ —2i.

Since p; and the associated ze#y converge, the absorption tends to vanish.

A complementary view of the above discussion is provided by representations of the
imaginary part versus the real part 8§ (Argand diagrams) from a large value pf to
p = 0, and for different values of Irfv) (see figure 4 and compare with figure 2).

The properties of the elements of tifematrix in the representation of plane waves
impinging from one side, namely the reflection and transmission amplitudes, are also of
interest since several important features of wave propagation depend directly on them. In
particular, the time delays are given by

19 19
I X L )
p ap p op

where ¢r and ¢ are the phases of the transmission and reflection amplitufies= (
|T|expipr) and R = |R|exp(igg)). For realv it follows from the unitarity of theS

T
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Figure 4. Im (Sp) versus R&Sp). In all cases Rév) = 5, and Im(v) = O (dots for equally
spaced values op): Im(v) = —0.223 (full curve), Im(v) = —0.8 (long broken curve), and

Im (v) = —20 (short broken curve).

05 7 T
- ., - ",

7~
—
~—
-
— 0.0 A !
7~
o
~—
£

-0.5 - T
-1.0 -0

5 ‘ 0.0 '
Re(R),Re(T)

Figure 5. Im(T) versus Re&T) (right curves) and IniR) versus Ré&R) (left curves).
Re(v) = 5.0: Im(v) = —0.00001 (dots for equally spaced valuesgf and Im(v) = —0.25
(broken curve).

matrix that the phases df and R only differ by an odd multiple ofr/2}, so that the two
delays are equatz = t7. But this is no longer true when an imaginary part is added to the
potential. There is a zero &f at resonance for Irfv) = 0. For values of Infv) slightly
more negative, this zero moves off the real axis and the derivativg afhanges sign at
resonance. This is similar to the effect discussed beforégfo(The difference is that the
critical value of Im(v) here is 0 instead of..) In contrast, the phase & does not suffer
any dramatic change (see the Argand diagrags,and ¢ for Im (v) = —0.00001 and

Im (v) = —0.25 in figures 5 and 6).

f This relation is obtained from the non-diagonal elements of the matrix equ&sibe= 1 for even potentials.
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Figure 6. ¢r(p) (two lower curves) andr(p) (upper curves), for Intw) = —0.000 01 (full
curve), and—0.25 (broken curve); R&) = 5.

3. Wavepacket scattering

In order to find an explicit wavefunction in the time dependent case the state at the initial
(preparation) time = 0 is chosen as the one considered by Elberfeld and Kleber [1]. In
momentum representation it is given by a Lorentzian-type function,

) 2b3 1/2 1
—alxep | T -
o= () g ®

b is related to the width of the momentum distributigp|£)|?. ([2%2 — 1]Y?b ~ 0.64b is
the half width at half height.) It is always assumed that O.

The wavefunction at an arbitrary time> 0 and positionx can be obtained by using
a contour integral representation of the evolution operatgn = e ' in the complex
momentumg-plane in terms of the resolvent — H)™2,
e—lzt
T H 1£) (10)
wherez = ¢2/2 is the complex energy. The integral contdurgoes from—oo to 400
in the complex momenturg-plane passing above all the singularities of the resolvent in
the upper halfz-plane (first energy sheet). Forreal these singularities correspond to the
discrete bound states of the Hamiltonian on the positive imagipais and the continuous
spectrum on the real axis; for a potential having a negative imaginary part, there may be
also an antiresonance pole in the second quadrant.

The resolvent can be separated into ‘free motion’ and scattering parts,

1 1 1 1
= + T 11
z—H z—Ho z— Hp Op(Z)z—Ho (11)

where the parametrized transition operéfgy(z) has been introduced. Using (1) and (11)
one finds the explicit expression
vg(q +1)?

Top(z) = |X>Tq)<)(| (12)

KUDIL) = i/rdq‘“x'
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whereC(g) is the cubic polynomial (3) introduced in the previous section.

The resolvent decomposition leads to a parallel decomposition of the evolution operator
into a free motion partl/o = e "', and a scattering part/, = e " — e"i"o' Using
(10)—(12) one finds for the free and scattering parts of the wavefunction,

(x|¥o,s (1)) = (x|Uos|L) = i / dg e Io,(q) (13)
where
B q
lo(g) = (XIZ — H0|£> (14)
_ q vg(q +1i)? 1
I(q) = <XIZ_ HOIX) @ (X|Z_ HOIE)- (15)

The matrix elements involved can be obtained by expanding the free Hamiltonian in
momentum eigenfunctions and using contour integration. Inserting them into the integrals
(13) the scattering part is decomposed into six terms denoted,as=1, ..., 6, and the

free part provides a ternfg. All of them can be expressed in the general form

Y, = K, / dg R,(q)e e 11 n=0,...,6. (16)
r
K, andY, are factors independent gf and R,(¢) is a rational fraction with,, poles at
qin I =1,...,L,. They are all first-order poles except possibly a second-order pole at
qg =1
b3/2 4y e Ixlg=ixe(pe+ib)
Ko=— K1 = —b%? Ko=-Ky——m— 17
°= 5 Yin 2 1b[l + (pec +1b)?] (A7)
e*(pf‘*xw) x|
Ky=—-Ki—57F— K4s=iKq. " 18
=i T 49
e—ix‘-(ﬂc"rih) exl.
—K1- Ke=—-Ki——— 19
> bl + (pe + ib)?] 6 b2+ G — po?] (19)
1 1
Ro=———— Ry = . 20
°T (g - p)F+ b2 1T (g D@+ (g — pod (0)
2 i 2
Ro= —1@*D g O (21)
(g —DC(@lg* — (pc +1b)?] (g —D)*C(q)
Ry=¢qR1 Rs = Ry/q Re = R3/q (22)
Yo=x,—x Y1 = x. — |x] Yo=Y3=0 Y4 = x, Ys =Yg = —|x]|.
(23)

The possible pole positions in the seven terms are, in addition to the three roots of the cubic
equationC(g) =0, p = +(p. +ib), p = p. — ib, andp = i.
The integral in (16) can be performed by completing first the square of the exponent,

—izt —iqY, = —u® +iY?/2t (24)
whereu, and f have been introduced for convenience,

un = (q + Yu/O/f (25)
f=@a—-i1. (26)
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Let us now expand,(q) into partial fractions,

L
. Al n Bn
R.(g) = — + —, (27)
,;q —qn (g —1)?

Here 4, , is the residue oR,(¢) atg;,, whereasB, = lim,_.i(q — i)2R,(q) if the double

pole appearsn(= 1, 3, 4, 6), and B, = 0 otherwise £ = 0, 2, 5). Explicit expressions for

all coefficients are easily obtained from (20)—(22). Once the original integra)for) is
decomposed into a sum of integrals for each of the partial fractions, the original contour
is deformed along a straight line rotated fy4 with respect to the real axis at the saddle
point (x, = 0),

psaddle= —Yn/t. (28)

n

This line, D,, is the steepest descent path of the exponential factor dlong this path

the variableu, is purely real. Except forn = 0, whenx. — x > 0, all ¥,, are negative, so

that the saddlg$29€is a positive real momentum. In the deformation process from the
original contourI” to D, (¢t = 0), with saddle pointps2dde= oo, the poles afp. + ib and i

are ‘crossed’ so their residues have to be added to the integral Blgrgee figure 7. Note

that this does not occur for the antiresonance pole when it is in the second quadrant, because
the original contoul” already has a loop around it that disappears in the deformation to
D, (0). The combination of the residue (proportional to an exponential, see (34) and (35)
below), and the integral (a-function) can be expressed, using the definition and symmetry
properties of thev-function, see e.g. [13, appendix A], as a singtdunction [21]. Whery
increased, moves leftwards, and these two poles are crossed again at certain critical times.
But the w-function after the crossing is formally identical to the one before the crossing.
Similar considerations apply to the resonance pole pnd ib in the fourth quadrant, so

that ¢, can be finally written as

Y (x) = Kn{[in > Az,nsz,nw<sl.nul.n)] — 2in By [y, w(ya) — i/nl/"’]/f} (29)
1
where
-1 antiresonance
b = { sign[im(g;.»)] otherwise (30)
urp = (qin+ Y/ f (31)
yo=(0+Y,/)/f. (32)

(The saddle fonyg whenx. — x > 0 moves rightwards fronp = —occ att = 0, but (29) is

still valid in this case.) Some of the ternig can be neglected in special circumstances. The
terms withn = 2, 3, 5, 6 are only important for small values pf.|. In ‘scattering problems’

|xc| is usually large enough to safely neglect these terms. They would be important in
‘decay problems’ where the state is initially in the potential region. Moreover, if we are not
interested in the potential region, close to the origia 0, n = 4 can also be neglected. In
summary, for an asymptotic (large|) analysis of a packet initially far from the potential
centre,r(¢t) =~ o+ ¥ is an excellent approximation. In fact, for the reflected wavepacket
after the collisiony; is the only important term. In figer7 a particular configuration of
the six poles inR; is depicted. These poles have been numbered for later refergpngsg:

are, as in the previous section, the rootsfwhile p, = p. + ib, ps = p. — ib, and

pe = i. The configuration corresponds to< Im(p1) and p. > Re(p1). Note thatp,
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Figure 7. A particular configuration of poles (squares) fgf in the momentum plane. Also
shown is the original integration contour (dotted line), and the deformed contours at short (full
line) and long times (broken liney = 0.5 —1i, p, = 3.269, andb = 0.4.

and ps, the ‘structural’ poles of the initial wavefunction, are also poles for the free motion
rational fractionRg.

Two basic components or approximations fgy are next discussed. At very short
times the saddle point of the steepest descent path is far away from all poles on the
positive real axis so that the main contribution comes from the large momenta of the saddle
itself. The saddle-point contribution to the integral alabg is obtained by approximating
R,(u) ~ R,(0) and integrating,

- Bn Al,n
yadde_ g gvi/@n /o [W -y } _ (33)

n I Upn

The polesps and pg in the upper halfp-plane have been crossed in the deformation from
' to D,(0), and the corresponding residues have to be added to the integral |orfepr
the first-order poles the exponential residue contribution is

K, /@ e i 2in Ay, (34)

and for the second-order po}s;,

—4in Yo K, B €Yt/ @) gyl (35)

f
The residue from the polg, is particularly important because it grows exponentially with
time as the saddle point @d; moves leftwards. At the critical time
Y,
Iy = — (36)
b+ pe

D; crosseg, and the residue contribution vanishes. Of course the actual effect of the pole in
the total wave is not discontinuous and it is fully taken into account in the correspomeling
function of the exact expression (29), but the crude approximation given by the exponential
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Figure 8. In P versus time P = |¥(x = 100,1)|?) for p. = 3, x. = —150, b = 0.03, and
v=>5. ¥ =1 (full curve); ¥ = vy (broken curve), andv = residue contributions op4 and
ps to Yo (triangles).

gives a very simple, approximate description. Shortly affethe poleps = p. —ib in the
fourth quadrant is crossed at the critical time

Y,

=5 (37)

Is
(unlessb > p.), so that a new residue has to be taken into account. In contrast to the
residue fromp,, this onedecreasesxponentially with time because of the pole position in
the lower half-plane. The formal contribution is the same as equation (34) but with a minus
sign, since the loop aroungs is clockwise. In this manner the successive effect of the
residues fronp, and ps provides the basic ‘mechanism’ behind the growth and subsequent
decay in time of the free wave and the scattered wave. The resonant pole is crossed too so it
also contributes with a residue, but for this particular configuration, in witiotip,)| > b,
it decays faster and can essentially be neglected.

4. Application examples

The time dependence associated with (unitary) resonance scattering or decay of unstable
states, in particular the time delays or the exponential decay, has been examined in many
works, see e.g. [6-8]. These well known aspects, and other less discussed features of
wavepacket propagation can be scrutinized with the present model. For all the applications
considered the exact result is provided as well as different approximations. (Further
examples of wavepacket scattering and decay making use of the present separable potential
model may be found in [9, 12, 13]).

4.1. Resonance scattering: time delay

Figure 8 shows the transmitted probability densityrat 100 as a function of time. The
initial momentum width is for this figure smaller than the resonance width, [Im (p1)|,
but the wavepacket has been chosen off-resonancg, at 3, in a region where there
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72ﬁ

Figure 9. In P versus time forp. = 3.269,x, = —100,b = 0.03, andv = 5. P = |W(x, 1)|%.
For Im(v) = 0, ¥ = v(x = 100 (full curve), ¥o(x = 100 (short broken curve),
Y1(x = 100 ~ ¢ (x = —100 (long broken curve), andl = residue contributions from
p1, pa and ps at x = 100 (triangles). For Inw) = —0.25, ¥ = v (x = 100 (dotted curve),
Y1(x = 100 ~ ¢ (x = —100 (full curve with circles).

is essentially full transmission, see figure 1. The full density is basically coincident with
the free motion density, which is very well described by the residue contributions from
ps and ps to Y. By contrast, in figure 9. is the real part of the resonance pole. The
componentsy|? and |y1]? of the probability density are also representedaifes 100. In

these conditiong/, is well approximated byj/;. Notice that neithetjy nor vy, dominate.
Rather, it is the interference between the two that determines the full wave. A reasonable
approximation is obtained by summing the residues of the palegs and ps. A minimum

is clearly identified in the transmitted wave, which corresponds to reflection caused by the
resonance. For negativethere is no significant interference with the free component and
Y (x = —100)? ~ |Y1(x = —100|? = |y1(x = 100)|°. The delay of the scattered or
reflected parts and total transmitted density with respect to the free contribution is to be
noted. It is related to the positive derivative of the phase of the transmission amplitude
for the dominant momentum components [22]. The time delay or advance is one of the
signatures of a resonance when the momentum width of the initial packet is smaller than
the resonance width. Under these conditions no exponential decay is observed because, as
discussed in the previous section, the effecpgfwith larger imaginary part, decays much
faster than that ops = p. — ib.

4.2. Resonance scattering: exponential decay

The ‘exponential decay’ of the resonance is best observed when |Im (p1)| in the
reflected wavepacket, whetg is very small and its interference with, is minimal. This

case is illustrated in figure 10. Note that the growth of the probability density is dominated
by the wavepacket features, i.e. by the structural palewhile the decay depends gn.

This asymmetry is of interest, for example, to determine the different times required to
‘charge’ or ‘discharge’ mesoscopic structures, such as the well in a double barrier resonant
tunnelling diode [23, 24].
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Figure 10. In P versus time forv = 5, x, = —20, andp, = 3.269. P = |W(x = —50,1)%.
W = o (full curve), ¥ = v (broken curve),& = residue contributions fronps and ps
(triangles), andl = residue contribution fromp; (circles).
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Figure 11. P(x) = | (x)|? versusx for + = 60Q 800, 100Q 1200 (full and broken curves
alternatively). The positions wherB; crosses the polg; are indicated with circles. The
parameters arg. = 2, b = 2, v = 5, andx. = —20.

4.3. Effect of the resonance in arbitrary wavepackets

For packets with arbitrary average momentum, but with some overlap with the (real)
resonance momenturpes, there appears a minimum in the transmitted wavepacket of
the probability density ak.s(t), see figure 11. This phenomenon was described for the
reflected wavepacket (the potentials considered had maximum transmission at resonance)
by Bramhall and Casper [25] and by Edgar [26]. The motion of the minimum however was
not discussed. This minimum moves with a velocity different from the average velocity
of the transmitted packet. Changing the wavepacket parametei®, b, xs(f) remains
essentially unaltered. It is therefore a potential dependent (and not state dependent) feature



Solvable model for quantum wavepacket scattering 9531

76ﬁ

0 200 400 600 800 1000 1200 1400 1600

Figure 12. In P versus timew =5, p. = 0.25,b = 1, andx, = —100. P = |W(x = 100, 1)|?.
W = vy (full curve), ¥ = vy (short broken curve)¥ = vr; (long broken curve), and
U = wgaddle+ wfaddle(cirdes).

associated with the resonance polgs is well approximated by the critical position where
the steepest descent pdih crosses the resonance pgig

Xres(t) ~ x. + [Re(p1) + Im (p1)]z. (38)

4.4. Low-energy scattering

This potential reflects low-momentum components due to a zero-energy peak in the
reflectance. The saddle of the steepest descent path moves from larger momenta (not
reflected) at short times to lower momenta (increasingly reflected) at larger times. The
consequence of this selective reflection is a seeming advance of the transmitted packet
with respect to the free one. An example is shown in figure 12. In this particular case
b is quite large and the initial packet has negligible overlap with the resonance region, so
that the residues of the poles have very little influence in the final result, which becomes
indistinguishable from the saddle approximatiggfide+ $294in the scale of the figure.

Even though the residues of the poles do not contribute appreciably, the effect of the different
singularities can be separated according to their saddle contributions. In figure 12 a good
fit with the exact result requires the combined effect of the saddle contributionsffpm

D3, Pa, and ps.

4.5. Complex potentials

A complex potential with an imaginary part may be understood in physical terms as an
effective interaction for a selected ‘channel’ [27]. In this context ‘absorption’ means
that there is a passage from the selected channel to other channels. Even if there is no
eventual absorption the additional channels may affect the dynamics. As an introductory
exploration of the effect of a complex potential in wavepacket dynamics we shall add a
negative imaginary part to the potential constant of the separable potential. As discussed
in section 2, for largglm (v)| there is no significant absorption. The important effect in
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that limit is the disappearance of the resonance peak (figure 1) and as a consequence all
related features of wavepacket resonant scattering. For small valuegof tihe absorptive
potential has two significant effects: absorption, and an asymmetrical time advance/delay
for the transmitted/reflected packet with respect to free motion wheis tuned with the
resonance, see figure 9, and the explanation provided in section 2.

4.6. Asymptotic behaviour at very large times

For large times the saddle points of the integration steepest descentjpadine very close

to the origing = 0. Moreover the exponentials*’t::2 become very narrow Gaussians in the
complex momentum plane. Thus an asymptotic formulae for the long-time behaviour can
be derived by expanding in the integrandsyafand s, the factorsly and I, that multiply

these exponentials around the origin and retaining the first terms, see (14), (15),

i 3/2 2
(xh//) ~ (4];_[—1/;) (;—) %(10 + IS)q:O (39)

so that the probability density decays asymptotically &s see figure 13. This is in contrast

to the dependence! of free motion, where there is no scattering contribution to cancel
the zeroth-order term. The asymptotic limit and the integration aveommute because

the asymptotic series holds uniformly so that the series can be integrated term by term [28].
This means that the probability to remain in a certain region (‘non escape’ probability) has
also the asymptotic dependencé asr — oo [11, 29]. This aspect has been controversial
and opposite claims have made in [30].

4.7. Asymptotic behaviour at very short times

The probability density when the ratig/¢ is large is now examined. In this case all poles
are far from the steepest descent pafhs and the saddle approximation (33) can be used.
Moreover,piadd'eis very large so the residuess ; are very small and the contribution from
Y5399 can be neglected with respect to the contribution frggi??® The consequence
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is that the ‘tip’ of the wavepacket is the same with or without interaction potential. This
should be expected since the very large-momentum components which determine the wave
behaviour in this regime are hardly affected by the potential. In summary, the asymptotic
expression fory (x, y) is obtained taking into account thet ~ v ~ y524de

253 1 2533
wt {[pe + (xe —x)/1]2+ 5?2 w(x, —x)*

[ () |7 ~ (40)

5. Conclusions

The time-dependent collision of an initial Lorentzian-like state with a separable potential
model has been solved analytically in termswoffunctions. Besides the exact solution,
simple approximations based on the main contributions from critical points have been
provided to gain intuitive insight into the various phenomena discussed: different aspects
of resonance scattering, low energy scattering, complex potential scattering, or short- and
long-time behaviour. We have described in particular an interesting asymmetry between
the delays of the transmitted and reflected wavepackets for complex potentials. This work
has dealt with scattering states wiihh and out asymtotes. A complementary study on
‘decay’ problems for the same potential may be found in [12, 13]. For this model there is
a single resonance, but multiple resonance systems, such as a double delta barrier [31], can
be studied with the same techniques used here. The ‘shutter problem’ with a square barrier
has been already treated in this fashion [22].
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