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Abstract. Quantum wavepacket collisions of a Lorentzian state with a separable potential
are described analytically. This model problem illustrates many different aspects of time-
dependent scattering: in particular, the effects associated with resonance poles (time delay,
exponential decay) and other critical points in the complex momentum plane, the effects of
complex absorbing potentials, as well as some unique aspects of short- and long-time behaviour.

1. Introduction

Analytically solvable models are useful research tools to check the validity of hypotheses,
new calculation methods, and/or approximations. They also lead occasionally to the
discovery of new physical effects. Few models exist that allow an explicit analytical
examination of time-dependent scattering. Elberfeld and Kleber described the collision
of a wavepacket, initially a Lorentzian-like function in momentum representation, with a
delta function potential [1]. The model has found some applications [2], but it is somewhat
limited because it does not consider resonances. The first aim of this paper is to provide an
analytical description of a wavepacket colliding with a separable potential (real or complex)
that admits resonance scattering. Then the model is applied to illustrate a number of
propagation characteristics. Some of them are well known but are included for completeness,
such as time delays or exponential decay. Others are not: for example, the build-up
regime previous to the exponential decay, deformations due to the resonances, very short
or very large times, low-energy scattering, interferences between the ‘free’ and ‘scattered’
components, the effect of ‘spurious’ poles and other singularities in the complex momentum
plane, or time-dependent scattering of absorptive potentials (where an interesting negative
delay phenomenon for the transmitted packet, versus a positive delay for the reflected one,
is described).

The stationary and time-dependent regimes are described in sections 2 and 3 respectively.
In section 4 the different applications are discussed.

2. Separable potential: stationary scattering

A separable potential model has been used in a number of previous works for different
purposes [3–13],

V = |χ〉v〈χ | 〈p|χ〉 =
(

2

π

)1/2 1

1+ p2
. (1)
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In this work all variables (position, momentum, energy, time) are dimensionless†. Before
discussing time-dependent scattering it is useful to first examine the stationary regime.
General properties of separable potentials have been examined by Ghirardi and Rimini [14].
For the particular form (1) the stationary scattering has been studied in the unitary case (v

real) [3, 5]. Here we shall briefly review the main results, and then extend the analysis
to the absorptive case. TheS matrix [15] is diagonal for symmetric and antisymmetric
combinations of plane waves. Its two elements in this basis are

S0 = η0e2iδ0 = T + R = (p + i)2C∗(p∗, v∗)
(p − i)2C(p, v)

S1 = η1e2iδ1 = T − R = 1

(2)

where

C(p, v) ≡ p(p + i)2− 2v(p + 2i). (3)

T andR are transmission and reflection amplitudes,η0,1 are (real) ‘inelasticity parameters’
[16], and δ0,1 (real) phase shifts. A peculiarity of this potential is its ‘transparency’ for
antisymmetric waves,η1 = 1, δ1 = 0.

For even potentials the transmission, reflection and absorption coefficients can be written
in terms of the phase shifts, see (2), as

T ≡ |T |2 =
(
η0− η1

2

)2

+ η0η1 cos2(δ0− δ1) (4)

R ≡ |R|2 =
(
η0− η1

2

)2

+ η0η1 sin2(δ0− δ1) (5)

A ≡ 1− T −R = 1− 1
2(η

2
0 + η2

1). (6)

The maximum absorbance occurs when one of the roots ofC∗(p∗, v∗) crosses the real axis
so thatS0 = η0 = 0.

The roots ofC(p, v) will be denoted aspj , j = 1, 2, 3, while the roots ofC∗(p∗, v∗)
are−pj . The latter are zeros ofS0 and the former are poles. The motion of the roots
of C(p, v) due to variations ofv was described in [5] for realv. In particular, when
v > (−11+ 5

√
5)/4, there are two roots with opposite real parts on both sides of the

negative imaginary axis, the ‘resonance’ and ‘antiresonance’ poles ofS0 (p1 andp2 in the
fourth and third quadrant respectively), and a third root in the negative imaginary axis (p3),
a ‘virtual state pole’ that approaches−2i asv → ∞. The resonance pole leads to a peak
in the reflection probability forv > 1

6, or, equivalently, a minimum in the transmission
probability (see figure 1). Note also the zero energy minimum related to the combined
effect of the virtual polep3 and the double ‘spurious’ pole atp = i [5]. The resonance
pole causes, when sufficiently close to the real axis, sudden jumps of the phase shift by
approximatelyπ (see figure 2). In general these jumps may lead to a maximum or a
minimum of the reflectance depending on the ‘background’ phase(δ0− δ1)bg. (The present
model provides a maximum while the square barrier is a well known example of minimum
reflection at resonance.)

Whenv is real, for every pole ofS0 atpj there is a zeroZj atp∗j , see (2). The distance
from any realp to both points (zero and pole) is equal, so thatS0 factorizes in contributions

† The dimensionless momentum, position and time, are related to the corresponding dimensional quantities,
denoted here with a tilde, by the following expressions:p = p̃/a, x = ax̃/h̄ and t = t̃a2/(mh̄), whereas
the potential constants (and similarly all energies) are linked byv = mṽ/a2. a is the characteristic momentum of
the system.
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Figure 1. Transmittance and absorbance versusp for Re(v) = 5: transmittances for Im(v) = 0
(full curve), Im(v) = −0.8 (short broken curve), and Im(v) = −20 (upper dotted curve).
Absorbances for Im(v) = −0.8 (long broken curve), and Im(v) = −20 (lower dotted curve).

Figure 2. δ0(p) versusp for Re(v) = 5: Im(v) = 0 (full curve), Im(v) = −0.3 (short broken
curve), and Im(v) = −20 (long broken curve).

of unit modulus from each zero-pole pair [5]. However, the addition of an imaginary part to
v breaks this symmetry. If the zeroZj is closer to the real axis than the polepj , absorption
occurs in the proximity of the pair because|p − Zj |/|p − pj | < 1. Figure 3 shows the
motion of zeros and poles ofS0 when−Im (v) is increased. The resonance zero-pole pair
goes down, towards the bisector of the fourth quadrant, and the antiresonance zero-pole
pair goes up, towards the bisector of the second quadrant.

When, at a critical value Im(v) = Ic, the zeroZ1 associated with the resonance pole
crosses the real axis,S0 vanishes for the real momentum of the zero, and maximum
absorption occurs. Simultaneously, the antiresonance pole crosses the real negative axis
so that, in accordance with Levinson’s theorem [17, 18], there is a discontinuous jump
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Figure 3. Motion of zeros (squares) and poles (stars) ofS0 in the complex momentum planep
for Re(v) = 5, from Im(v) = 0 to Im(v) = −20.

in the phase shiftδ0 at the origin. (The possible 2π ambiguities in the definition ofδ0

are fixed by imposingδ0(∞) = 0 and continuity.) The unusual fact with respect to the
unitary case is that this jump is not caused by a new (regular) bound state of real negative
energy (represented by a pole in the positive imaginary axis), but by a new ‘localized state’
represented by a pole in the second quadrant of the momentum plane [17, 19]. It has positive
real energy and a negative imaginary energy so that its norm disappears exponentially with
time. For Im(v) slightly more negative thanIc the slope ofδ0 is negative at resonance,
which physically implies an anomalous negative time delayτ0,

τ0 ≡ 2

p

∂δ

∂p
(7)

or time advance, instead of the standard (positive) resonance time delay found in the
Hermitian case [20].

By decreasing further Im(v) to more negative values the zero-pole pair moves away from
the real axis and the resonance width broadens until the peak in the reflectance eventually
disappears (see figure 1). For fixed Re(v) the asymptotic behaviour as Im(v) → −∞ of
the roots ofC(p, v) is p1 ∼ [−Im (v)]1/2(1− i), p2 ∼ [−Im (v)]1/2(i − 1), andp3 ∼ −2i.
Sincep1 and the associated zeroZ1 converge, the absorption tends to vanish.

A complementary view of the above discussion is provided by representations of the
imaginary part versus the real part ofS0 (Argand diagrams) from a large value ofp to
p = 0, and for different values of Im(v) (see figure 4 and compare with figure 2).

The properties of the elements of theS matrix in the representation of plane waves
impinging from one side, namely the reflection and transmission amplitudes, are also of
interest since several important features of wave propagation depend directly on them. In
particular, the time delays are given by

τT = 1

p

∂φT

∂p
τR = 1

p

∂φR

∂p
(8)

where φT and φR are the phases of the transmission and reflection amplitudes (T =
|T | exp(iφT ) and R = |R| exp(iφR)). For real v it follows from the unitarity of theS
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Figure 4. Im (S0) versus Re(S0). In all cases Re(v) = 5, and Im(v) = 0 (dots for equally
spaced values ofp): Im (v) = −0.223 (full curve), Im(v) = −0.8 (long broken curve), and
Im (v) = −20 (short broken curve).

Figure 5. Im (T ) versus Re(T ) (right curves) and Im(R) versus Re(R) (left curves).
Re(v) = 5.0: Im(v) = −0.000 01 (dots for equally spaced values ofp), and Im(v) = −0.25
(broken curve).

matrix that the phases ofT andR only differ by an odd multiple ofπ/2†, so that the two
delays are equal,τR = τT . But this is no longer true when an imaginary part is added to the
potential. There is a zero ofT at resonance for Im(v) = 0. For values of Im(v) slightly
more negative, this zero moves off the real axis and the derivative ofφT changes sign at
resonance. This is similar to the effect discussed before forδ0. (The difference is that the
critical value of Im(v) here is 0 instead ofIc.) In contrast, the phase ofR does not suffer
any dramatic change (see the Argand diagrams,φT , andφR for Im (v) = −0.000 01 and
Im (v) = −0.25 in figures 5 and 6).

† This relation is obtained from the non-diagonal elements of the matrix equationSS† = 1 for even potentials.
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Figure 6. φT (p) (two lower curves) andφR(p) (upper curves), for Im(v) = −0.000 01 (full
curve), and−0.25 (broken curve); Re(v) = 5.

3. Wavepacket scattering

In order to find an explicit wavefunction in the time dependent case the state at the initial
(preparation) timet = 0 is chosen as the one considered by Elberfeld and Kleber [1]. In
momentum representation it is given by a Lorentzian-type function,

〈p|L〉 = e−ixcp

(
2b3

π

)1/2
1

b2+ (p − pc)2 . (9)

b is related to the width of the momentum distribution|〈p|L〉|2. ([21/2− 1]1/2b ≈ 0.64b is
the half width at half height.) It is always assumed thatxc < 0.

The wavefunction at an arbitrary timet > 0 and positionx can be obtained by using
a contour integral representation of the evolution operatorU(t) ≡ e−iHt in the complex
momentumq-plane in terms of the resolvent(z−H)−1,

〈x|U(t)|L〉 = i

2π

∫
0

dq q〈x| e−izt

z−H |L〉 (10)

wherez = q2/2 is the complex energy. The integral contour0 goes from−∞ to +∞
in the complex momentumq-plane passing above all the singularities of the resolvent in
the upper half-q-plane (first energy sheet). Forv real these singularities correspond to the
discrete bound states of the Hamiltonian on the positive imaginaryq-axis and the continuous
spectrum on the real axis; for a potential having a negative imaginary part, there may be
also an antiresonance pole in the second quadrant.

The resolvent can be separated into ‘free motion’ and scattering parts,

1

z−H =
1

z−H0
+ 1

z−H0
Top(z)

1

z−H0
(11)

where the parametrized transition operatorTop(z) has been introduced. Using (1) and (11)
one finds the explicit expression

Top(z) = |χ〉vq(q + i)2

C(q)
〈χ | (12)
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whereC(q) is the cubic polynomial (3) introduced in the previous section.
The resolvent decomposition leads to a parallel decomposition of the evolution operator

into a free motion part,U0 = e−iH0t , and a scattering part,Us = e−iHt − e−iH0t . Using
(10)–(12) one finds for the free and scattering parts of the wavefunction,

〈x|ψ0,s(t)〉 = 〈x|U0,s |L〉 = i

2π

∫
dq e−izt I0,s(q) (13)

where

I0(q) = 〈x| q

z−H0
|L〉 (14)

Is(q) = 〈x| q

z−H0
|χ〉vq(q + i)2

C(q)
〈χ | 1

z−H0
|L〉. (15)

The matrix elements involved can be obtained by expanding the free Hamiltonian in
momentum eigenfunctions and using contour integration. Inserting them into the integrals
(13) the scattering part is decomposed into six terms denoted asψn, n = 1, . . . ,6, and the
free part provides a termψ0. All of them can be expressed in the general form

ψn = Kn
∫
0

dq Rn(q)e
−izte−iqYn n = 0, . . . ,6. (16)

Kn andYn are factors independent ofq, andRn(q) is a rational fraction withLn poles at
ql,n, l = 1, . . . , Ln. They are all first-order poles except possibly a second-order pole at
q = i.

K0 = b3/2

π
K1 = 4v

iπ
b3/2 K2 = −K1

e−|x|e−ixc(pc+ib)

b[1+ (pc + ib)2]
(17)

K3 = −K1
e−(|x|−xc)

[b2+ (i − pc)2]
K4 = iK1e−|x| (18)

K5 = −K1
e−ixc(pc+ib)

ib[1+ (pc + ib)2]
K6 = −K1

exc

i[b2+ (i − pc)2]
(19)

R0 = 1

(q − pc)2+ b2
R1 = 1

(q − i)2C(q)[b2+ (q − pc)2]
(20)

R2 = q2(q + i)

(q − i)C(q)[q2− (pc + ib)2]
R3 = q2

(q − i)2C(q)
(21)

R4 = qR1 R5 = R2/q R6 = R3/q (22)

Y0 = xc − x Y1 = xc − |x| Y2 = Y3 = 0 Y4 = xc Y5 = Y6 = −|x|.
(23)

The possible pole positions in the seven terms are, in addition to the three roots of the cubic
equationC(q) = 0, p = ±(pc + ib), p = pc − ib, andp = i.

The integral in (16) can be performed by completing first the square of the exponent,

−izt − iqYn = −u2
n + iY 2

n /2t (24)

whereun andf have been introduced for convenience,

un = (q + Yn/t)/f (25)

f = (1− i)
√

1/t. (26)
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Let us now expandRn(q) into partial fractions,

Rn(q) =
Ln∑
l=1

Al,n

q − ql,n +
Bn

(q − i)2
. (27)

HereAl,n is the residue ofRn(q) at ql,n, whereasBn = limq→i(q − i)2Rn(q) if the double
pole appears (n = 1, 3, 4, 6), andBn = 0 otherwise (n = 0, 2, 5). Explicit expressions for
all coefficients are easily obtained from (20)–(22). Once the original integral forψn(x) is
decomposed into a sum of integrals for each of the partial fractions, the original contour
is deformed along a straight line rotated byπ/4 with respect to the real axis at the saddle
point (un = 0),

psaddle
n = −Yn/t. (28)

This line,Dn, is the steepest descent path of the exponential factor e−u2
n . Along this path

the variableun is purely real. Except forn = 0, whenxc − x > 0, all Yn are negative, so
that the saddlepsaddle

n is a positive real momentum. In the deformation process from the
original contour0 to Dn(t = 0), with saddle pointpsaddle= ∞, the poles atpc + ib and i
are ‘crossed’ so their residues have to be added to the integral alongDn, see figure 7. Note
that this does not occur for the antiresonance pole when it is in the second quadrant, because
the original contour0 already has a loop around it that disappears in the deformation to
Dn(0). The combination of the residue (proportional to an exponential, see (34) and (35)
below), and the integral (aw-function) can be expressed, using the definition and symmetry
properties of thew-function, see e.g. [13, appendix A], as a singlew-function [21]. Whent
increasesDn moves leftwards, and these two poles are crossed again at certain critical times.
But thew-function after the crossing is formally identical to the one before the crossing.
Similar considerations apply to the resonance pole andpc − ib in the fourth quadrant, so
thatψn can be finally written as

ψn(x) = Kn
{[

iπ
∑
l

Al,nsl,nw(sl,nul,n)

]
− 2iπBn[ynw(yn)− i/π1/2]/f

}
(29)

where

sl,n =
{
−1 antiresonance

sign[Im(ql,n)] otherwise
(30)

ul,n = (ql,n + Yn/t)/f (31)

yn = (i + Yn/t)/f. (32)

(The saddle forψ0 whenxc − x > 0 moves rightwards fromp = −∞ at t = 0, but (29) is
still valid in this case.) Some of the termsψn can be neglected in special circumstances. The
terms withn = 2, 3, 5, 6 are only important for small values of|xc|. In ‘scattering problems’
|xc| is usually large enough to safely neglect these terms. They would be important in
‘decay problems’ where the state is initially in the potential region. Moreover, if we are not
interested in the potential region, close to the originx = 0, n = 4 can also be neglected. In
summary, for an asymptotic (large|x|) analysis of a packet initially far from the potential
centre,ψ(t) ≈ ψ0+ψ1 is an excellent approximation. In fact, for the reflected wavepacket
after the collisionψ1 is the only important term. In figure 7 a particular configuration of
the six poles inR1 is depicted. These poles have been numbered for later reference:p1,2,3

are, as in the previous section, the roots ofC, while p4 = pc + ib, p5 = pc − ib, and
p6 = i. The configuration corresponds tob < Im (p1) and pc > Re(p1). Note thatp4
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Figure 7. A particular configuration of poles (squares) forψ1 in the momentum plane. Also
shown is the original integration contour (dotted line), and the deformed contours at short (full
line) and long times (broken line).v = 0.5− i, pc = 3.269, andb = 0.4.

andp5, the ‘structural’ poles of the initial wavefunction, are also poles for the free motion
rational fractionR0.

Two basic components or approximations forψn are next discussed. At very short
times the saddle point of the steepest descent path is far away from all poles on the
positive real axis so that the main contribution comes from the large momenta of the saddle
itself. The saddle-point contribution to the integral alongDn is obtained by approximating
Rn(u) ≈ Rn(0) and integrating,

ψsaddle
n = KneiY 2

n /(2t)
√
π

[
Bn

fy2
n

−
∑
l

Al,n

ul,n

]
. (33)

The polesp4 andp6 in the upper half-p-plane have been crossed in the deformation from
0 to Dn(0), and the corresponding residues have to be added to the integral alongDn. For
the first-order poles the exponential residue contribution is

Kne
iY 2
n /(2t)e−u

2
l,n2iπAl,n (34)

and for the second-order polep6,

−4iπ

f
ynKnBne

iY 2
n /(2t)e−y

2
n . (35)

The residue from the polep4 is particularly important because it grows exponentially with
time as the saddle point ofD1 moves leftwards. At the critical time

t4 = − Yn

b + pc (36)

D1 crossesp4 and the residue contribution vanishes. Of course the actual effect of the pole in
the total wave is not discontinuous and it is fully taken into account in the correspondingw-
function of the exact expression (29), but the crude approximation given by the exponential
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Figure 8. lnP versus time (P = |9(x = 100, t)|2) for pc = 3, xc = −150, b = 0.03, and
v = 5. 9 = ψ (full curve); 9 = ψ0 (broken curve), and9 = residue contributions ofp4 and
p5 to ψ0 (triangles).

gives a very simple, approximate description. Shortly aftert4, the polep5 = pc − ib in the
fourth quadrant is crossed at the critical time

t5 = Yn

b − pc (37)

(unlessb > pc), so that a new residue has to be taken into account. In contrast to the
residue fromp4, this onedecreasesexponentially with time because of the pole position in
the lower half-plane. The formal contribution is the same as equation (34) but with a minus
sign, since the loop aroundp5 is clockwise. In this manner the successive effect of the
residues fromp4 andp5 provides the basic ‘mechanism’ behind the growth and subsequent
decay in time of the free wave and the scattered wave. The resonant pole is crossed too so it
also contributes with a residue, but for this particular configuration, in which|Im (p1)| > b,
it decays faster and can essentially be neglected.

4. Application examples

The time dependence associated with (unitary) resonance scattering or decay of unstable
states, in particular the time delays or the exponential decay, has been examined in many
works, see e.g. [6–8]. These well known aspects, and other less discussed features of
wavepacket propagation can be scrutinized with the present model. For all the applications
considered the exact result is provided as well as different approximations. (Further
examples of wavepacket scattering and decay making use of the present separable potential
model may be found in [9, 12, 13]).

4.1. Resonance scattering: time delay

Figure 8 shows the transmitted probability density atx = 100 as a function of time. The
initial momentum width is for this figure smaller than the resonance width,b < |Im (p1)|,
but the wavepacket has been chosen off-resonance, atpc = 3, in a region where there
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Figure 9. lnP versus time forpc = 3.269,xc = −100,b = 0.03, andv = 5. P = |9(x, t)|2.
For Im(v) = 0, 9 = ψ(x = 100) (full curve), ψ0(x = 100) (short broken curve),
ψ1(x = 100) ≈ ψ(x = −100) (long broken curve), and9 = residue contributions from
p1, p4 andp5 at x = 100 (triangles). For Im(v) = −0.25, 9 = ψ(x = 100) (dotted curve),
ψ1(x = 100) ≈ ψ(x = −100) (full curve with circles).

is essentially full transmission, see figure 1. The full density is basically coincident with
the free motion density, which is very well described by the residue contributions from
p4 andp5 to ψ0. By contrast, in figure 9pc is the real part of the resonance pole. The
components|ψ0|2 and |ψ1|2 of the probability density are also represented forx = 100. In
these conditionsψs is well approximated byψ1. Notice that neitherψ0 nor ψ1 dominate.
Rather, it is the interference between the two that determines the full wave. A reasonable
approximation is obtained by summing the residues of the polesp1, p4 andp5. A minimum
is clearly identified in the transmitted wave, which corresponds to reflection caused by the
resonance. For negativex there is no significant interference with the free component and
|ψ(x = −100)|2 ≈ |ψ1(x = −100)|2 = |ψ1(x = 100)|2. The delay of the scattered or
reflected parts and total transmitted density with respect to the free contribution is to be
noted. It is related to the positive derivative of the phase of the transmission amplitude
for the dominant momentum components [22]. The time delay or advance is one of the
signatures of a resonance when the momentum width of the initial packet is smaller than
the resonance width. Under these conditions no exponential decay is observed because, as
discussed in the previous section, the effect ofp1, with larger imaginary part, decays much
faster than that ofp5 = pc − ib.

4.2. Resonance scattering: exponential decay

The ‘exponential decay’ of the resonance is best observed whenb > |Im (p1)| in the
reflected wavepacket, whereψ0 is very small and its interference withψs is minimal. This
case is illustrated in figure 10. Note that the growth of the probability density is dominated
by the wavepacket features, i.e. by the structural polep4, while the decay depends onp1.
This asymmetry is of interest, for example, to determine the different times required to
‘charge’ or ‘discharge’ mesoscopic structures, such as the well in a double barrier resonant
tunnelling diode [23, 24].



9530 J G Muga and J P Palao

Figure 10. lnP versus time forv = 5, xc = −20, andpc = 3.269. P = |9(x = −50, t)|2.
9 = ψ (full curve), 9 = ψ0 (broken curve),9 = residue contributions fromp4 and p5

(triangles), and9 = residue contribution fromp1 (circles).

Figure 11. P(x) = |ψ(x)|2 versusx for t = 600, 800, 1000, 1200 (full and broken curves
alternatively). The positions whereD1 crosses the polep1 are indicated with circles. The
parameters arepc = 2, b = 2, v = 5, andxc = −20.

4.3. Effect of the resonance in arbitrary wavepackets

For packets with arbitrary average momentum, but with some overlap with the (real)
resonance momentumpres, there appears a minimum in the transmitted wavepacket of
the probability density atxres(t), see figure 11. This phenomenon was described for the
reflected wavepacket (the potentials considered had maximum transmission at resonance)
by Bramhall and Casper [25] and by Edgar [26]. The motion of the minimum however was
not discussed. This minimum moves with a velocity different from the average velocity
of the transmitted packet. Changing the wavepacket parameters,pc or b, xres(t) remains
essentially unaltered. It is therefore a potential dependent (and not state dependent) feature
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Figure 12. lnP versus time.v = 5, pc = 0.25, b = 1, andxc = −100. P = |9(x = 100, t)|2.
9 = ψ (full curve), 9 = ψ0 (short broken curve),9 = ψ1 (long broken curve), and
9 = ψsaddle

0 + ψsaddle
1 (circles).

associated with the resonance pole.xres is well approximated by the critical position where
the steepest descent pathD1 crosses the resonance polep1,

xres(t) ≈ xc + [Re(p1)+ Im (p1)]t. (38)

4.4. Low-energy scattering

This potential reflects low-momentum components due to a zero-energy peak in the
reflectance. The saddle of the steepest descent path moves from larger momenta (not
reflected) at short times to lower momenta (increasingly reflected) at larger times. The
consequence of this selective reflection is a seeming advance of the transmitted packet
with respect to the free one. An example is shown in figure 12. In this particular case
b is quite large and the initial packet has negligible overlap with the resonance region, so
that the residues of the poles have very little influence in the final result, which becomes
indistinguishable from the saddle approximationψsaddle

0 + ψsaddle
1 in the scale of the figure.

Even though the residues of the poles do not contribute appreciably, the effect of the different
singularities can be separated according to their saddle contributions. In figure 12 a good
fit with the exact result requires the combined effect of the saddle contributions fromp1,
p3, p4, andp6.

4.5. Complex potentials

A complex potential with an imaginary part may be understood in physical terms as an
effective interaction for a selected ‘channel’ [27]. In this context ‘absorption’ means
that there is a passage from the selected channel to other channels. Even if there is no
eventual absorption the additional channels may affect the dynamics. As an introductory
exploration of the effect of a complex potential in wavepacket dynamics we shall add a
negative imaginary part to the potential constant of the separable potential. As discussed
in section 2, for large|Im (v)| there is no significant absorption. The important effect in
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Figure 13. lnP versus lnt for pc = 3.269, xc = −150, b = 0.03, and v = 5.
P = |9(x = 100, t)|2. 9 = ψ (full curve), and9 = ψ0 (broken curve).

that limit is the disappearance of the resonance peak (figure 1) and as a consequence all
related features of wavepacket resonant scattering. For small values of Im(v) the absorptive
potential has two significant effects: absorption, and an asymmetrical time advance/delay
for the transmitted/reflected packet with respect to free motion whenpc is tuned with the
resonance, see figure 9, and the explanation provided in section 2.

4.6. Asymptotic behaviour at very large times

For large times the saddle points of the integration steepest descent pathsDn are very close
to the originq = 0. Moreover the exponentials e−u

2
n become very narrow Gaussians in the

complex momentum plane. Thus an asymptotic formulae for the long-time behaviour can
be derived by expanding in the integrands ofψ0 andψs the factorsI0 andIs that multiply
these exponentials around the origin and retaining the first terms, see (14), (15),

〈x|ψ〉 ∼ (1− i)

4π1/2

(
1

t

)3/2 d2

dq2
(I0+ Is)q=0 (39)

so that the probability density decays asymptotically ast−3, see figure 13. This is in contrast
to the dependencet−1 of free motion, where there is no scattering contribution to cancel
the zeroth-order term. The asymptotic limit and the integration overx commute because
the asymptotic series holds uniformly so that the series can be integrated term by term [28].
This means that the probability to remain in a certain region (‘non escape’ probability) has
also the asymptotic dependencet−3 as t →∞ [11, 29]. This aspect has been controversial
and opposite claims have made in [30].

4.7. Asymptotic behaviour at very short times

The probability density when the ratiox/t is large is now examined. In this case all poles
are far from the steepest descent pathsDn, and the saddle approximation (33) can be used.
Moreover,psaddle

1 is very large so the residuesAl,1 are very small and the contribution from
ψsaddle

1 can be neglected with respect to the contribution fromψsaddle
0 . The consequence
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is that the ‘tip’ of the wavepacket is the same with or without interaction potential. This
should be expected since the very large-momentum components which determine the wave
behaviour in this regime are hardly affected by the potential. In summary, the asymptotic
expression forψ(x, y) is obtained taking into account thatψ ∼ ψ0 ∼ ψsaddle

0 ,

|ψ(x)|2 ∼ 2b3

πt

1

{[pc + (xc − x)/t ]2+ b2}2 ∼
2b3t3

π(xc − x)4 . (40)

5. Conclusions

The time-dependent collision of an initial Lorentzian-like state with a separable potential
model has been solved analytically in terms ofw-functions. Besides the exact solution,
simple approximations based on the main contributions from critical points have been
provided to gain intuitive insight into the various phenomena discussed: different aspects
of resonance scattering, low energy scattering, complex potential scattering, or short- and
long-time behaviour. We have described in particular an interesting asymmetry between
the delays of the transmitted and reflected wavepackets for complex potentials. This work
has dealt with scattering states within and out asymtotes. A complementary study on
‘decay’ problems for the same potential may be found in [12, 13]. For this model there is
a single resonance, but multiple resonance systems, such as a double delta barrier [31], can
be studied with the same techniques used here. The ‘shutter problem’ with a square barrier
has been already treated in this fashion [22].
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